

Using Chaos Theory to Identify the Dynamic States of an Urban Road Network for Traffic Control

Presentation at the JCT 18th Annual Traffic Signals Symposium, University of Warwick, 19th – 20th Sept. 2013

Abraham Narh MSc. BSc.(Hons.) Civil Eng. Transport Operations Research Group School of Civil Engineering & Geosciences Newcastle University

This presentation gives the results of the first stage of my research for a PhD at Newcastle University and therefore it is currently not published. Please treat the content sensitively and contact Abraham Narh (<u>a.t.narh@ncl.ac.uk</u>) for any detailed information.

Outline of Presentation

- Background
- Challenges of UTC
- Chaos Theory
- Lyapunov Exponents
- Examples of Lyapunov Profiles
- Conclusion

The Butterfly-Effect

Phase Portrait

lewcastle

Background

- Increase in road traffic and travel demand
 >> congestion, delays, accidents
 >> detrimental impact on environment
- Road transport >> 90% of C0₂ emissions from the transport sector (DfT, 2004)
- 89% of delays due to congestion in urban areas.
- By 2025 if left unchecked, will cost an extra £22 billion worth of time in England alone (Eddington, 2006)
- By 2025, 13% of traffic in congestion will be subject to start-stop conditions (Eddington, 2006)

JCT Symposium 2013

Climate Change

Poor Air Quality

Economic Costs

Challenges of UTC

UTC Systems e.g. SCOOT

- □ perform well in under-saturated traffic conditions,
- □ manage queues on a local level
- □ Assume 'fixed plans' during over-saturated conditions
- □ Unable to reliably forecast the onset of congestion
 - □ in real-time
 - on a local or strategic level
- **Chaos Theory has potential to help tackle this challenge**
- Allowing effective preventative action by adjusting in advance traffic signal settings appropriately

Chaos Theory

Finding the Lag Time (τ)

 $\Box \quad The autocorrelation coefficient at lag \tau is given by:$

$$C(\tau) = \frac{\sum_{i=1}^{N-\tau} [x(i) - \overline{x}] [x(i+\tau) - \overline{x}]}{\sum_{i=1}^{N} [x(i) - \overline{x}]^2}$$

where:

- x
 is the mean of observed data series;
- **x**(i) is the preceding time observation;
- $x(i + \tau)$ is the observation at the lagged time (τ)
- □ Plot the autocorrelation coefficient against the lag τ to establish the solution that is independent $C(\tau) = 0.4$
- For occupancy lag τ was 25-33 minutes for different months of the year

Finding the Dimension

Correlation Dimension/Embedding Dimension:

Consider two points in the reconstructed phase space:

$$\begin{split} X(j) &= x(j), x(j+\tau), x(j+2\tau), \dots, x(j+(m-1)\tau)] \\ & \dots \\ X(i) &= x(i), x(i+\tau), x(i+2\tau), \dots, x(i+(m-1)\tau)] \\ & \dots \\ \dots \\ (2) \end{split}$$

Let r_{ij} (m) denote the distance between them, so that: $r_{ij}(m) = \left\| X_i - X_j \right\|$

□ For occupancy the dimension was 3

Lyapunov Exponent

The instantaneous Lyapunov Exponent is given by:

$$\lambda = \lim_{\substack{t \to \infty \\ |\Delta X_0| \to 0}} \frac{1}{t} \ln \left| \frac{dx(X_0, t)}{dX_0} \right|$$

where:

- dX₀ is the initial separation betweem two points;
- dx(X₀, t) is the separation after a time lapse t

Lyapunov exponent is a measure of congestion performance

Identifying states of congestion

- Requires time series data (e.g. from Motes, Bluetooth, ANPR, SCOOT) to estimate the Lyapunov Exponent
- **Detect chaotic behaviour using the Lyapunov Exponent** (λ):
 - If $\lambda < 0$, traffic is asymptotically stable (No congestion);
 - If $\lambda = 0$, steady traffic state i.e. exhibits Lyapunov stability;
 - If $\lambda > 0$, chaotic traffic state (emergence of congestion)

ears of excellence

Fransport Operations Research Group

Wewcastle University Results: Lyapunov Profiles

Lyapunov Profile (from 0600 to 1159, 11-June-2002)

Newcastle University **Results: Lyapunov Profiles**

Lyapunov Profile (from 1200 to 1859, 11-June-2002)

- Developed Lyapunov Exponent as an indicator of the on-set of congestion for a link over time
- Next step is to develop a method to establish relationship between the cause and effect spatially over time across the network
- Data sources that give an area-wide view of the evolution of congestion will enable traffic to be managed to avoid SCOOT junctions becoming over-saturated

Conclusion

- For SCOOT link occupancy at 20 second sampling interval there are slices (lags of 25-33 minutes duration) of time that are independent
- Blocks of 3 slices behave independently
- Lyapunov Exponent can enable traffic managers to forecast the onset of congestion in real-time over the network
- Chaos Theory to enable traffic to be managed to avoid SCOOT junctions becoming over-saturated

Thank you for listening

Newcastle

Jniversity

Any Questions?

Abraham Narh PhD Researcher a.t.narh@newcastle.ac.uk

Transport Operations Research Group School of Civil Engineering and Geosciences Cassie Building Newcastle University Newcastle upon Tyne NE1 7RU

Civil Engineering and Geosciences

